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Abstract

Commonality analysis is a method of decomposing the R? in a multiple regression analysis
into the proportion of explained variance of the dependent variable associated with each
independent variable ﬁniquely and the proportion of explained variance associated with the
common effects of one or more independent variables in various combinations. Unlike other
variance partitioning methods (e.g., stepwise regression) that distort the results, commonality
analysis considers all possible orders of entry into the model and does not depend on a priori
knowledge to arrange the predictors. However, traditionally commonality analyses have been
underutilized in research. The purpose of the present paper is to introduce commonality analysis
as a accurate and efficient method for partitioning variance. A data set is used to provide a
heuristic example that explains the steps and guidelines necessary for performing a commonality

analysis. Tables are utilized to provide visual aids.
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Partitioning Predicted Variance into Constituent Parts:
A Primer on Regression Commonality Analysis

Initially, ANOVA was developed to relieve researchers of the computational burden
inherent in analyzing data; because it partitions the variance of the dependent variable
uncorrelated parts it provides computational simplicity (Cohen, 1968). In fact, all OVA methods
(i.e., ANOVA, ANCOVA, MANOVA) convert intervally-scaled independent variables into
nominally-scaled independent variables, even when these variables are not already nominally-
scaled (Thompson, 1984). However, increased access to computers and rapid advancements in
computer software have led to reduced dependence on OVA methods. As a result, researchers
and analysts do not need to continue the prodigal discarding of variance that occurs when
intervally-scaled variables are converted to nominally-scaled variables (Murthy, 1994), which
consequently leads to a loss of information and a less sensitive analysis (Pedhazur, 1982). In
addition, it has been shown that OVA-type methods also reduce the reliability of the variables
considered in the design, inflate Type II error probability, and distort the distribution shapes and
relationships among the variables (Cohen, 1968, Murthy, 1994; Thompson, 1992).

These shortcomings have resulted in less use of OVA methods by researchers (cf. Elmore
& Woehlke, 1988; Goodwin & Goodwin, 1985; Willson, 1980) and a greater use of general linear
model approaches such as regression (Rowell, 1991, 1996; Thompson, 1992). As Thompson
(1992) explains, the increased usage of multiple regression is due, in part, to the realization that
all parametric statistical analyses are part of a single general linear model (e.g., regression,

canonical correlation analysis, and structural equation modeling). As Neter, Kutner, Nachtsheim,
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and Wasserman (1996) noted, “Regression analysis is a statistical methodology that utilizes the
relation between two or more quantitative variables so that one variable can be predicted from the
other, or others” (p. 3). Regression analyses are of great use in identifying the unique contribution
of each predictor variable in explaining the variance of the dependent variable. The interpretation
of a regression analysis is fairly straightforward when the design consists of only one predictor
variable, as in Case I, or when the predictor variables are perfectly uncorrelated, as in Case II.
When there is no overlap (i.e., perfectly uncorrelated) between the predictor variables, the sum of
the squared bivariate correlations (r?) for the predictors is equal to the squared multiple
correlation (R?) involving all the predictors (Thompson, 1992).

Therefore, the partitioning of variance in Cases I and II is relatively easy and
straightforward to interpret. However, models that have predictor variables that are correlated to
some extent, which is usually the case, provide greater complications, making it more difficult to
determine the “true” effects of the independent variables on the dependent variable. Of particular
concern is the fact that the sum of the squared simple correlations rarely sums to the squared
multiple correlation (Beaton, 1973). As Thompson and Borrello (1985) emphasized, in such
instances it is necessary to examine both beta weights and structure coefficients when interpreting
such data. However, examining the beta weights and the structure coefficients does not explain
the relative contribution of each predictor, uniquely or in combination, with other predictors, in
the regression analyses.

Researchers can better understand the contribution of each predictor variable with the use

of methods that partition the variance of R? into all the constituent parts that can be attributed to
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each predictor variable (Rowell, 1991, 1996). One method for conducting this partitioning of
variance is by performing a commonality analysis on the data. Commonality analysis, also referred
to as “element analysis” (Newton & Spurrell, 1967) and “component analysis” (Wisler, 1969), is
defined as a “procedure for decomposing R? in multiple regression analyses into the percent of
variance in the dependent variable associated with each independent variable uniquely, and the
proportion of explained variance associated with the common effects of predictors” (Seibold &
McPhee, 1979, p. 355). In addition, they contend that decomposing R? into its constituent parts is
essential because:

Advancement of theory and the useful application of research findings

depend not only on establishing that a relationship exists among predictors

and the criterion, but also upon determining the extent to which those

independent variables, singly and in all possible combinations, share

variance with the dependent variable. Only then can we fully know the

relative importance of the independent variables with regard to the

dependent variable in question. (p. 355)

Unlike other variance partitioning methods (e.g., stepwise regression) that distort the
results by selecting variables that are not necessarily the best predictors for a particular model
(Snyder, 1991; Thompson, 1995), commonality analysis considers all possible orders of entry into
the model. In addition, commonality analysis is fairly safe because it does not depend on a priori
knowledge to arrange the predictors. The benefit of not needing a priori knowledge is particularly

important when the knowledge is fallible. According to Cooley and Lohnes (1976), “The
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commonality partitioning method is neutral, and its neutrality allows the information inherent in
the data about the value of organizing observations in a certain framework (that of the domain of
predictors) to emerge” (p. 219).

Writing Commonality Formulas

The purpose of the present paper is to provide a brief introduction to commonality
analysis as a method of variance partitioning. More detailed explanations on the derivation and
calculation formulas are provided by Beaton (1973), Pedhazur (1982), or Seibold and McPhee
(1979).

The unique contribution (U) of a predictor variable is defined as the portion of the
variance that can be attributed to that predictor when it is entered last into the equation
(Pedhazur, 1982). When there are two predictor variables the unique contribution can be
expressed as:

Ui =R%.12 - R%2
where Ui = the unique contribution of variable 1; R?%.2= the squared multiple correlation between
the dependent variable (Y) and variables 1 and 2; R?.= the squared multiple correlation between
Y and variable 2. Similarly, the unique contribution of variable 2 is:

Uz =R%.2 - Ry
where Uz = the unique contribution of variable 2; R%.2= the squared multiple correlation between
Y and variables 1 and 2; R2.= the squared multiple correlation between Y and variable 1.
Unique contributions are basically the squared semi-partial correlation between the dependent

variable and the variable of interest after the effects of all other variables have been partitioned
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out.

However, a commonality analysis also considers the fact that portions of the total
explained variance may be common to two or more variables (Seibold & McPhee, 1979). The
portion of the explained variance that is attributed to a particular group is called the common
component. The common component for a two-variable model is defined as:

Ciz=R¥%.12- U(1) - U(2)
where Ci2 = the common component of variables 1 and 2. The equation can be modified with the
right-hand side of the equations presented earlier for unique contributions and written as:
Cl12 =R%.12 - (R¥.12 - R%.2) - (R%.12 - R%2)

=R%12 - R%.12 + R%2 - R%.12 + R%y.

=R%1+ R%.:- R¥yn2
The common component of variables 1 and 2 is called a second-order commonality. In addition,
third-order common components are determined for all sets of three variables, fourth-order
common components are determined for all sets of four variables, and so forth as variables are
added to the model. The number of components into which the explained variance can be
decomposed is equal to 2" - 1, where n is the number of independent variables in the regression
analysis.

Therefore, the difficulty of commonality analyses increases in exponential proportion to
the increases in predictor variables. For instance, in the case of a model with six predictors, R? can
be decomposed into 64 different components. Of the 64, 58 are common components and six are

unique components. One way of bypassing this problem is to arrange the variables into common
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groups, then run the commonality analysis on the different groups rather than separately on
individual variables. However, the problem with this method is that if the predictors are
conceptually distinct, grouping them may not make any sense. Consequently, if the predictors are
highly correlated, it would be extremely difficult to justify separate analyses for each variable
(Pedhazur, 1982; Seibold & McPhee; Thompson, 1984). Table 1 presents the formulas for
conducting commonality analyses on 2-, 3-, and 4- variable models.

To conduct a commonality analysis it is necessary that the R? values be computed for all
possible combinations of the predictor variables (or the predictor variable groups). Rowell (1991,
1996) suggested that researchers interested in conducting a commonality analysis use the SAS
(PROC SQUARE) program that will print out all possible R? combinations for the independent
variables in the model. If SAS is unavailable, researchers can compute all necessary R? ’s by
individually computing each R? combination with SPSS. The Appendix shows all the possible R?
combinations necessary for a three variable commonality analysis. These R?’s will be used in the
heuristic example of the upcoming section. In any case, whether one uses SAS or SPSS, the
procedure for calculating the necessary R?’s is fairly easy, especially if a microcomputer
spreadsheet program is used.

Heuristic Example

The data set from a study conducted by Holzinger and Swineford (1939) is used here to
illustrate the procedures involved in conducting a commonality analysis. The data set consists of
27 different variables obtained on 301 participants on various cognitive tests. For heuristic

purposes the author arbitrarily chose scores from a General Information Verbal test (GIV) to be
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the dependent variable, and scores from a Paragraph Comprehension test (PC), Word Meaning
test (WM), and grade level (GL) to serve as the predictor variables.

The first step is to obtain the seven equations necessary to compute the unique and
common components for a 3-variable model (see Table 1). As mentioned previously, commonality
analyses can be conducted with more than three variables; the author chose a 3-variable model
because it illustrates the statistical procedure without being computationally exhausting. The next
step 1s to determine all the necessary R? values required for the equations in step 2 and to arrange
them in tabular form. The Appendix presents all the R? combinations for the predictor variables
used in this model.

Next all the unique and common components are determined. First, the researcher should
substitute all the appropriate R? values into the pertaining formulas. Any sp'réa:d.shéet program
(e.g., Quattro Pro or Micro-Soft Excel) can be used to perform the calculations. An example of
the calculations is:

U1(PC) =R%y123-R?y23

(.5886) - (.5561)

0325

Thus, the unique contribution of variable 1, scores on the Paragraph Comprehension test, to the
total explained variance is .0325, or approximately 3%. Furthermore, the common component of
the Paragraph Comprehension test predictor with word meaning is:
Cl12 =-R%3+R%13+R%2-R%un
=-.0456 +.4379 + 5561 - .5886

=.3598

10
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Therefore, the common variance accounted for by the shared contributions of the paragraph
comprehension test and the word meaning test is .3598, or approximately 36%. The last step is to
arrange all the unique and common components into a commonality table, such as the one
presented in Table 2. Once in tabular form, the results of the unique and common components
calculated can be checked by summing down each column to obtain the r? value when only one
variable is entered into the regression equation. For instance, summing down column 3 (grade)
results in a value of .0456, which is the r? value for the regression model when only the variable,
grade level, is entered. In addition, the sum of all the unique and common components should
equal to .5886, which is the R? value when all three predictor variables are entered into the
regression model.
Discussion

An inspection of Table 2 indicates that the unique predicted variance of the Word
Meaning test is approximately 15% (.1507), and its total common component with one or more of
the other predictor variables is approximately 40% (.3958). In this particular model scores from
the Word Meaning test account for 55% (.5465) of the variance and are considered the best
predictor of performance on the General Information Verbal test. In addition, scores on the
Paragraph Comprehension test uniquely accounts for 3% (.0325) of the total variance, however
the total common component is approximately 40% (.3994). The other variable, grade level,
contributes little to the total variance, a unique contribution of .00051 and total common
component of .0405.

Although not illustrated in this heuristic example, commonality analyses can occasionally

11
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result in some components obtaining negative values. These negative values should not be
interpreted as a variable’s ability to explain less than 0% of the variance (Pedhazur, 1982; Seibold
& McPhee, 1979; Thompson, 1985). Instead, the presence of a negative value is usually attributed
to the presence of suppressor effects.

Commonality analysis is one method of partitioning variance in regression analyses. When
there are no more than four predictor variables the analysis is fairly easy and straightforward.
Commonality analysis should be very useful to educational and social science researchers when
constraints restrict the number of predictors that can be used in a model. Commonality analysis is
an excellent method for partitioning the variance of the dependent variable into its constituent

components and for understanding the relationships of the predictors with each other and with the

criterion variable.
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Table 1

Formulas for Unique and Commonality Components of Variance

Two Independent Variables

U(l) = 2y.12 - Rzy.Z
U(2) = Rzy.12 - Rzy.l
C(12) =R%:2+ R%. - R¥yn2

Three Independent Variables

U(1)= R?%uns-R%x

U(2)= R%un3-R¥%us

U(3)= R%uu3-R%n

C(12) = - R%3+ R%.u3 + R%y3 - Rz

C(13) =- R%2+ R%.12 + R%y23 - R¥yun

C(23) =-R%a1 + R%u12 + R%yu3 - R¥yux

C(123) =R%.1 + R%2 + R%:3 - R%.12 - R%u3 - R%.23 + R%.2

Four Independent Variables

U(1) = R%.234 - R34

U(2) = R%.234 - R2%y34

U(3) = R¥%.234 - R%.124

U(1) = R?%u.234 - R%.123

C(12) = - R%34 + R%u.13s + R%234 - R%.1234

C(13) = - R%2s + R%.124 + R%234- R%y1234

C(14) = - R%23 + R%.123 + R%.234 - R%.1234

C(23) = - R%.a + R%124 + R%.134 - R%.1224

C(24) = - R%.13 + R%.123 + R%.134 - R%.1234

C(34) = - R¥12+ R%.123 + R%124 - R%.124

C(123) = - R%4 + R%14 + R%24 + R%34 - R%124 - R%134 - R2y234 + Ry

C(124) = - R%3+ R%.13+ R%23+ R%.34- R%u23- R%u34- R%23a+ R3y.1234

C(134) = - R%2+ R%.12+ R%23+ R%24- R%123- R%124- R% 234+ R3y.1234

C(234) = - R%u+ R%.2+ R¥%u3- R%1a- R%123- R%y124- R34+ R2v1234

C(1234) = R%.1+ R%2+ R%3+ R%a- R%12- R%u3- R%yu4- R%23 - R%24- R334+ Rz
+ R2%124+ R34+ R2y234- R%y 1234

Note. The difficulty of interpretation increases in proportion to the increases in predictor variables.

ERIC 16
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Table 2

Commonality Analysis Summary Table

1 2 3
Component Paragraph Com. Word Meaning Grade Level
u(1) .0325
U(2) 1507
U@3) .0051
C(12) 3598 3598
C(13) .0045 .0045
C(23) .0009 .0009
C(123) .0351 .0351 .0351
Total 4319 .5465 .0456
8] .0325 1507 .0051
C 3994 .3958 .0405

Note. The sum of the columns equals the R? of that particular predictor and the
sum of all the unique and common components equals the multiple R? of the

regression equation.

17




Appendix

Partitioning Predicted Varnance

R-Squares of Paragraph Comprehension Test, Word Meaning Test, and Grade

to General Information Verbal Test

17

Number of Procedures in Model R-square Variables in Model
1 4319 1 Paragraph Comprehension
test

.5468 2 Word Meaning test
.0456 3 grade level

2 .5835 12
4379 13
.5561 23

3 .5886 123

18
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